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Abstract
The core structure of the 〈100〉{010} edge dislocations in body-centered cubic (bcc) crystal Fe
has been investigated by the modified Peierls–Nabarro (P–N) equation which includes the
discrete correction. An analytical expression of the dislocation solution of the dislocation
equation has been obtained by using the truncation approximation. It is found that the
dislocation width is nearly doubled by the discrete effects and the agreement between the
theoretical prediction and the numerical simulation is improved remarkably.

1. Introduction

It is widely accepted that defects such as dislocations play
a key role in determining the mechanical properties of
materials [1, 2]. A great deal of work has focused on studies
of the core structure of dislocation because the dislocation core
is significant to many phenomena and is the key to understand
the dislocation properties [3, 4]. It is generally believed that
besides the numerical calculation the P–N theory is the best
for determining the dislocation core [1]. However, there are
still some fundamental issues that need to be clarified in the
P–N theory itself. One of the important issues is the lattice
discrete effects. In the P–N theory, the crystal was treated
approximately as an elastic continuum body and so the discrete
effects were underestimated [5]. In particular, displacement
varies so rapidly at the dislocation core that the Peierls equation
should be modified in the region.

In this paper, the lattice discrete effect is taken into
account in calculating the core structure of the 〈100〉{010}
edge dislocation in bcc Fe. The contribution of the lattice
effect can be described by a term proportional to the second
order derivative of the displacement field. The new dislocation
equation with the lattice discrete correction is referred to as
the modified P–N equation. The results calculated from the
modified P–N equation are compared with those obtained from
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the classical P–N equation and the numerical simulations.
It is found that the core width is greatly broadened by the
discrete effects, and our results agree well with the data from
the numerical simulations. Therefore, in order to arrive at a
precise prediction, it is necessary to include the lattice discrete
correction and use the modified P–N equation in calculating
the dislocation core structure.

2. The modified P–N equation

The dislocation core structure in the bcc Fe attracts much
attention of researchers because the dislocations in bcc Fe are
various. The most simple type of dislocation is the 〈100〉{010}
edge dislocation. Bullough and Perrin [6] and Gehlen et al
[7] studied the 〈100〉{010} edge dislocation of bcc Fe based
on the atomic simulations using the Johnson potential. Both
their results show that the dislocation core is very narrow with
a radius of between 1.25b and 1.65b (b is the Burgers vector).
Chen et al established the core structure of the 〈100〉{010} edge
dislocation by using the molecular dynamics simulation and
the radius of the dislocation core they calculated is 1.67b [8].
In theory, Yan et al discussed the dislocation based on the P–
N model by taking into account the generalized-stacking-fault
(GSF) energy [9]. The effective core radius (half width) they
calculated is between 0.85b and 0.93b. Obviously, the core
radius they calculated is much smaller than those in numerical
simulations. The reason may be that the lattice discrete effects
were ignored incorrectly.
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The modified P–N equation due to the lattice discrete
correction has been obtained firstly using the solvable models
and derived later in a model-independent way [10]. In
a strict way, the discrete effects are represented in the
modified P–N equation by a second-differential term and an
integral term with the integrand including the third-differential.
However, the integral term is less important than the second-
differential term. In fact, the discrete effects can be effectively
represented by the second-differential term provided that the
new coefficient is determined in a self-consistent way. For the
〈100〉{010} edge dislocation in bcc crystal Fe, which is shown
in figure 1, the modified P–N equation containing the discrete
correction takes the following form:

−β
d2ux

dx2
− μ

π(1 − ν)

∫ ∞

−∞

dux

dx |x=x′

x ′ − x
dx ′ = f (ux) (1)

where ux is the relative displacements of the bilateral misfit
planes along the slip direction 〈100〉, f is the nonlinear
interaction that can be calculated from GSF energy, ν and μ

are Poisson’s ratio and shear modulus, respectively, β is a new
parameter describing the lattice discrete effects.

The physical implication of the left-hand of the modified
P–N equation can be understood in the following way. When
the crystal is viewed as a set of planes parallel to the misfit
plane, the misfit plane itself plays a distinct role compared with
other planes. To see this more clearly, let us imagine a crystal
with zero shear modulus. For such a crystal, the internal planes
have no effects on the misfit plane on which the displacement
field u is defined. The contribution comes only from the
interaction among the atoms on the misfit plane. In this case,
the integral term disappears and the second-differential term
remains only in equation (1). Therefore, one can conclude
that the second-differential term originates mainly from the
interaction among the atoms on the misfit plane, while the
integral term originates mainly from the interaction between
the atoms on the misfit plane and atoms in the interior. In
the long wavelength approximation, the force in a unit area
attributed to the interaction of the atoms on the misfit plane is
given by

mc2
s

a2

d2ux

dx2
, (2)

where the symmetry of the dislocation has been used, cs is
the wavevelocity of the misfit plane which is uncoupled from
the other planes, m is the atom mass, a is the lattice constant.
Therefore, it is reasonable to expected that

β ∝ mc2
s

a2
. (3)

Although the ratio may be dependent of the crystal structure,
but considering the approximation accuracy in the dislocation
calculation, it is assumed to be a constant. From the solvable
model, it is known that the ratio constant equals 3/4.

The velocity cs can be well expressed in terms of the
bulk wavevelocity. It is observed that when the transverse
wave propagates in the bulk crystal along a plane like (010),
the velocity mainly depends on the coupling between the

o
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Figure 1. The configuration of the 〈100〉{010} edge dislocation in
bcc Fe. The atoms represented by the solid circles and the empty
circles are the vertex angle atoms and the body-centered atoms of bcc
Fe. The horizontal line represented the cut plane which divides the
lattice into an upper part and a lower part, the vertical line is the
symmetry center. The cut plane is also the slip plane and the
dislocation slips along the direction 〈100〉. The coordinate origin is at
the center of the dislocation.

planes. So the coupling between planes can be removed by
an operation of subtraction. In the present case, it is found

c2
s ≈ c2

l − c2
t , (4)

where cl and ct are the longitudinal and transverse
wavevelocities. The velocities cl and ct can be expressed by
the elastic constants [11]

c2
l = 2μ(1 − ν)

ρ(1 − 2ν)
, c2

t = μ

ρ
,

where ρ = m
�

is the mass density, � = a3

2 is the volume of the
primitive cell. It is easy to obtain from equations (3) and (4)

β = 3μ�

4(1 − 2ν)
, (5)

where isotropy has been assumed.
In the classical P–N model, the right-hand of equation (1)

is given by the sinusoidal force law. The sinusoidal force law
is a rough approximation for the real materials. A modification
of the sinusoidal force law has been discussed in [12]

f = − ∂γ

∂ux
, (6)

γ = μa2

2π2d
sin2 πux

a

(
1 + 	 sin2 πux

a

)
, (7)

where d = a/2 is the spacing between the misfit
planes, dimensionless parameter 	 describes the higher order
correction in the Fourier series of the misfit energy. If 	 = 0,
one recovers the sinusoidal force law. For the 〈100〉{010} edge
dislocation in bcc Fe, 	 can be determined by the fitting of
the GSF energy calculated numerically. The first-principles
calculations of the GSF energy have been done in the spin-
polarized local density approximation (LSDA) and the spin-
polarized generalized gradient approximation (SGGA) [9].
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Figure 2. The fitting of the GSF energy. The solid lines and the
dotted lines represent the GSF energies used in this paper and
calculated in [9], respectively.

From figure 2, one sees that the numerical results can be well
described by equation (7) and the parameter 	 is negative
and varies in the range from −0.21 to −0.25 when different
approximations are used.

The modified P–N equation can be solved by the
truncating method given by one of the authors previously [13].
The solution is

ux = a

π

[
arctan p + (1 − ε)p

1 + p2

]
+ a

2
(8)

with

p = κx, κ = 2ε(1 − ν)

d
,

and ε is the root of the following algebraic equation

	

(
1 + 3ε

7

)
− ε2

ε2
0

(
1 − 11ε

16

)
+ (1 − ε)2 = 0, (9)

where ε0 is given by

1

ε2
0

= 8β(1 − ν)2

μd
.

This solution is valid as long as the correction 	 is not large.
The dimensionless parameter ε0 only depends on the elastic
properties and geometry structure. For the 〈100〉{010} edge

Figure 3. The dislocation densities of the 〈100〉{010} edge
dislocations in bcc Fe.

dislocation in bcc Fe, ε0 = 0.37, and ε = 0.24 if 	 = −0.21,
ε = 0.23 if 	 = −0.25. The dislocation densities have been
plotted for 	 = −0.21 and 	 = −0.25 in figure 3. Obviously,
the modified dislocation core is much wider than that given
by the P–N equation. In figure 4, the structure factor ε has
been plotted as a function of ε0 and 	, which is given by
equation (9). For the positive 	, ε increases linearly with ε0.
For negative 	, ε increases nonlinearly, but slowly.

In order to compare our results quantitatively with the
results obtained previously, the half width of the 〈100〉{010}
edge dislocation, defined as the atomic distance over which ux

changes from a/4 to 3a/4, has been calculated. The results
are summarized in table 1. It is shown that if the discrete
correction is neglected, our results are very close to that
obtained by Yan et al [9]. However, having taken into account
the lattice discrete correction, the corresponding core width is
nearly doubled. This indicates that the discrete correction is
important. The half width obtained from the modified P–N
theory is about 1.5–1.6b, which agrees with 1.25–1.65b [7] and
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Figure 4. The relations between ε and ε0 for different 	.

Table 1. The half width of the dislocation core in units of the
Burgers vector b = a.

	 = −0.21 	 = −0.25

P–N 0.88, 0.85 [9] 0.94, 0.93 [9]
Modified P–N 1.51 1.57
Numerical simulation 1.25 − 1.65 [7], 1.67 [8]

1.67b [8] obtained from numerical simulations. This indicates
that the modified P–N equation can provide a quantitative
prediction with a satisfactory accuracy.

In summary, the core of the 〈100〉{010} edge dislocation in
bcc Fe has been calculated by using the modified P–N equation
which contains the lattice discrete correction. The results
agree well with those obtained from numerical simulations.
The problem of it being too narrow to fit the numerical
results, which exists in the P–N model, has been removed
automatically. Therefore, the P–N equation should be modified
by taking the lattice correction into account. Although the
〈100〉{010} edge dislocation in Fe is a concrete dislocation
that is not very active in bcc crystal, our conclusions are valid
for other dislocations and are significant for the dislocation
theory. A detailed investigation of the influence of the
discrete correction on other dislocations like 〈111〉{110} will
be presented in the future.
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